ACIDS AND BASES REFERENCE SHEETT

7 Strong Acids (H^{+}) All other acids are weak		8 Strong Bases (OH) All other bases are weak	
Hydrochloric acid	HCl	Lithium hydroxide	LiOH
Hydrobromic acid	HBr	Sodium hydroxide	NaOH
Hydroiodic	HI	Potassium hydroxide	KOH
Perchloric acid	HClO_{4}	Rubidium hydroxide	RbOH
Chloric acid	HClO_{3}	Cesium hydroxide	CsOH
Nitric acid	HNO_{3}	Calcium hydroxide	$\mathrm{Ca}(\mathrm{OH})_{2}$
Sulfuric acid	$\mathrm{H}_{2} \mathrm{SO}_{4}$	Strontium hydroxide	$\mathrm{Sr}(\mathrm{OH})_{2}$
---------	------	Barium hydroxide	$\mathrm{Ba}(\mathrm{OH})_{2}$

Memorize these 15, ALL ELSE ARE considered WEAK

$$
\mathrm{pH} \underset{\mathrm{pH}=14-\mathrm{pOH}}{\stackrel{\mathrm{pOH}=14-\mathrm{pH}}{\leftrightarrows}} \mathrm{pOH}
$$

Arrhenius

- Acids make H^{+} ions in aqueous solutions
- Bases make OH ions in solution

Bronsted-Lowry
 Lewis

- Acids donate protons
- Bases accept protons
- Acids accept electron pairs
- Bases donate electron pairs

STRONG ACIDS			
Acid	Formula	Conj. Base	Ka
Perchloric	HClO_{4}	ClO_{4}^{-}	Very large
Hydriodic	HI	F^{-}	Very large
Hydrobromic	HBr	Br^{-}	Very large
Hydrochloric	HCl	Cl^{-}	Very large
Nitric	HNO_{3}	NO_{3}^{-}	Very large
Sulfuric	$\mathrm{H}_{2} \mathrm{SO}_{4}$	HSO_{4}^{-}	Very large
Hydronium ion	$\mathrm{H}_{3} \mathrm{O}^{+}$	$\mathrm{H}_{2} \mathrm{O}$	1.0

COMMON WEAK ACIDS			
Acid	Formula	Conj.Base	Ka
lodic	HIO_{3}	$\mathrm{IO}_{3}{ }^{-}$	1.7×10^{-1}
Oxalic	$\mathrm{H}_{2} \mathrm{C}_{2} \mathrm{O}_{4}$	$\mathrm{HC}_{2} \mathrm{O}_{4}{ }^{-}$	5.9×10^{-2}
Sulfurous	$\mathrm{H}_{2} \mathrm{SO}_{3}$	$\mathrm{HSO}_{3}{ }^{-}$	1.5×10^{-2}
Phosphoric	$\mathrm{H}_{3} \mathrm{PO}_{4}$	$\mathrm{H}_{2} \mathrm{PO}_{4}{ }^{-}$	7.5×10^{-3}
Citric	$\mathrm{H}_{3} \mathrm{C}_{6} \mathrm{H}_{5} \mathrm{O}_{7}$	$\mathrm{H}_{2} \mathrm{C}_{6} \mathrm{H}_{5} \mathrm{O}_{7}{ }^{-}$	7.1×10^{-4}
Nitrous	HNO_{2}	$\mathrm{NO}_{2}{ }^{-}$	4.6×10^{-4}
Hydrofluoric	HF	F^{-}	3.5×10^{-4}
Formic	HCOOH	HCOO^{-}	1.8×10^{-4}
Benzoic	$\mathrm{C}_{6} \mathrm{H}_{5} \mathrm{COOH}$	$\mathrm{C}_{6} \mathrm{H}_{5} \mathrm{COO}$	6.5×10^{-5}
Acetic	$\mathrm{CH}_{3} \mathrm{COOH}$	$\mathrm{CH}_{3} \mathrm{COO}^{-}$	1.8×10^{-5}
Carbonic	$\mathrm{H}_{2} \mathrm{CO}_{3}$	$\mathrm{HCO}_{3}{ }^{-}$	4.3×10^{-7}
Hypochlorous	HClO	ClO^{-}	3.0×10^{-8}
Hydrocyanic	HCN	$\mathrm{CN}{ }^{-}$	4.9×10^{-10}

COMMON WEAK BASES			
Base	Formula	Conj. Acid	K b
Ammonia	NH_{3}	$\mathrm{NH}_{4}{ }^{+}$	1.8×10^{-5}
Methylamine	$\mathrm{CH}_{3} \mathrm{NH}_{2}$	$\mathrm{CH}_{3} \mathrm{NH}_{3}{ }^{+}$	4.38×10^{-4}
Ethylamine	$\mathrm{C}_{2} \mathrm{H}_{5} \mathrm{NH}_{2}$	$\mathrm{C}_{2} \mathrm{H}_{5} \mathrm{NH}_{3}{ }^{+}$	5.6×10^{-4}
Diethylamine	$\left(\mathrm{C}_{2} \mathrm{H}_{5}\right)_{2} \mathrm{NH}^{4}$	$\left(\mathrm{C}_{2} \mathrm{H}_{5}\right)_{2} \mathrm{NH}_{2}{ }^{+}$	1.3×10^{-3}
Triethylamine	$\left(\mathrm{C}_{2} \mathrm{H}_{5}\right)_{3} \mathrm{~N}$	$\left(\mathrm{C}_{2} \mathrm{H}_{5}\right)_{3} \mathrm{NH}^{+}$	4.0×10^{-4}
Hydroxylamine	HONH_{2}	$\mathrm{HONH}_{3}{ }^{+}$	1.1×10^{-8}
Hydrazine	$\mathrm{H}_{2} \mathrm{NNH}_{2}$	$\mathrm{H}_{2} \mathrm{NNH}_{3}{ }^{+}$	3.0×10^{-6}
Aniline	$\mathrm{C}_{6} \mathrm{H}_{5} \mathrm{NH}_{2}$	$\mathrm{C}_{6} \mathrm{H}_{5} \mathrm{NH}_{3}{ }^{+}$	3.8×10^{-10}
Pyridine	$\mathrm{C}_{5} \mathrm{H}_{5} \mathrm{~N}$	$\mathrm{C}_{5} \mathrm{H}_{5} \mathrm{NH}^{+}$	1.7×10^{-9}

You can convert back and forth from Ka to Kb using this equation:

$$
K w=K a \times k b
$$

$\underset{\text { Large Ka }}{\text { Strong Acid }} \xrightarrow{\text { makes } a} \underset{\text { Small Kb }}{\text { Weak Conj. Base }}$
$\underset{\text { Small Ka }}{\text { Weak Acid }} \xrightarrow{\text { makes a }}$ Strong Conj. Base
$\underset{\text { Large Kb }}{\text { Strong Base } \xrightarrow{\text { makes } a}} \underset{\text { Small Ka }}{\text { Weak Conj. Acid }}$ Large Kb Small Ka
$\underset{\text { Small Kb }}{\text { Weak Base }} \xrightarrow{\text { makes } a}$ Strong Conj. Acid

WEAK ACIDS ANI BASES CALCULATIIONS

- Dissociation is a reversible reaction!
- So use Equilibrium Expressions, K values, and Ice Tables to find []'s before doing pH type calculations
- Equilibrium Expression still $\frac{\text { Products }}{\text { Reactants }}$ which will be $\frac{[\text { Dissociated Ions] }}{\text { [Undissociated Molecule] }}$
- To find $\mathrm{pH}(\mathrm{or} \mathrm{pOH})$ of something you first have to know the $\left[\mathrm{H}_{3} \mathrm{O}_{+}\right]$(or $\left[\mathrm{OH}^{-}\right]$)
- For weak acids/bases you need to do the following steps to find those []'s
- Step 1 - ICE Table
- Step 2 - Write a Ka expression (or Kb depending on the problem)
- Step 3 - Solve for x using either quadratic or 5% rule
- Step 4 - put x back into ICE Table to find the actual [] answers
- Step 5 - use your $\left[\mathrm{H}_{3} \mathrm{O}^{+}\right.$] (or $\left[\mathrm{OH}^{-}\right]$) to find the pH (or pOH)

MONOPROTIC VS. POLYPROTIC - HOW MANY IONS COME OFF?

- Monoprotic acids/bases \rightarrow only have one H^{+}or OH^{-}
- Diprotic acids/bases \rightarrow have two H^{+}or OH^{-}
- Triprotic acids/bases \rightarrow have three H^{+}or OH^{-}

- Strong Bases

- all OH^{-}come off
- Take that into account with your stoichiometry when finding the [OH^{-}]
- $1 \mathrm{M} \mathrm{Ca}(\mathrm{OH})_{2}=2 \mathrm{M}$ of OH^{-}ions

- Strong Acids

- The first H^{+}comes off and it would be a normal strong acid type pH calculation
- No Ka value needed
- No ICE Table needed.
- The second/third/etc H^{+}might come off BUT
- That would be a weak reaction and you would need:
- Ka value for that second H^{+}coming off
- Would need to do an ICE table
- Then add the $\left[\mathrm{H}^{+}\right]$from the ICE Table calculation to the $\left[\mathrm{H}^{+}\right]$you found from the first H^{+}coming off.
- Example: $\mathrm{H}_{2} \mathrm{SO}_{4} \rightarrow \mathrm{H}^{+}+\mathrm{HSO}_{4}^{-}$

Only assume one H^{+}comes off unless given Ka value for $\mathrm{HSO}_{4}^{-} \rightarrow \mathrm{H}^{+}+\mathrm{SO}_{4}{ }^{2-}$

- Weak Acids/Bases
- For the given Ka or Kb value assume only one $\mathrm{H}^{+} / \mathrm{OH}^{-}$comes off.
- You would need a second Ka or Kb value to do a second ICE Table for the second $\mathrm{H}^{+} / \mathrm{OH}^{-}$coming off, and then would need to add your []'s from each ICE Table calculation.

